J. Phys. Soc. Jpn. 69, pp. 543-551 (2000) [9 Pages]
FULL PAPERS

Transport Property of an Organic Conductor α-(BEDT-TTF) 2I 3 under High Pressure - Discovery of a Novel Type of Conductor -

+ Affiliations
1Department of Physics, Toho University, Miyama 2-2-1, Funabashi 274-85102Institute for Solid State Physics, University of Tokyo, Roppongi 7-22-1, Minato-ku, Tokyo 106-8666

We have found quite a new type of transport phenomenon in an organic crystal α-(BEDT-TTF) 2 I 3 under high pressure. Essentially, it is a semimetal or a narrow gap semiconductor. But, the transport property is peculiar. The conductivity of this the carrier (hole) density and mobility change by a about 6 orders of magnitude. They change in a manner so that the effects just cancel out giving rise to the temperature independent conductivity. At low temperatures, the system is in a state with high mobility (3 ×10 5 cm 2 /V·sec) and low carrier density (5 ×10 15 cm -3 ). This state has been found to be very sensitive to magnetic field. We propose a mechanism for the extremely strong temperature dependence of the carrier density. It is based on the band structure and takes the thermal effect into consideration.

©2000 The Physical Society of Japan

References

  • 1 T.Ishiguro and K.Yamaji:Organic Superconductors (Springer-Verlag, Berlin, 1990). CrossrefGoogle Scholar
  • 2 T.Mishima, T.Ojiro, K.Kajita, Y.Nishio and Y.Iye: Synth. Metals 69–71 (1995) 771. CrossrefGoogle Scholar
  • 3 N.Tajima, K.Matuo, M.Tamura, Y.Nishio, K.Kajita, T.Naito and H.Kobayashi:Synth. Metals 86 (1997) 1981. CrossrefGoogle Scholar
  • 4 For example, K.Kajita, Y.Nishio, T.Takahashi, W.Sasaki, R.Kato, H.Kobayashi, A.Kobayashi and Y.Iye: Solid State Comm. 70 (1989) 1189; K.Oshima, T.Mori, H.Inokuchi, H.Urayama, H.Yamochi and G.Saito:Phys. Rev. B 38 (1988) 938. CrossrefGoogle Scholar
  • 5 E. B.Yagubskii, I. F.Schegolev, V. N.Laukhin, P. A.Kononovich, M. V.Kartsovnik, A. V.Zarykina and L. I.Buravov: JETP Lett. 39 (1984) 12. Google Scholar
  • 6 E. B.Yagubskii, I. F.Schegolev, S. I.Pesotskii, V. N.Laukhin, P. A.Kononovich, M. V.Kartsovnik and A. V.Zvarykina: JETP Lett. 39 (1984) 329. Google Scholar
  • 7 K.Bender, I.Hennig, D.Schweitzer, K.Dietz, H.Endres and H. J.Keller:Mol. Cryst. Liq. Cryst. 108 (1984) 359. CrossrefGoogle Scholar
  • 8 R. P.Shibaeva, V. F.Kaminskii and E. B.Yagubskii: Mol. Cryst. Lig. Cryst. 119 (1985) 361. CrossrefGoogle Scholar
  • 9 A.Kobayashi and H.Kobayashi: to be published. Google Scholar
  • 10 T.Ojiro, K.Kajita, Y.Nishio, H.Kobayashi, A.Kobayashi, R.Kato and Y.Iye: Synth. Metals 55–57 (1993) 2268. CrossrefGoogle Scholar
  • 11 K.Kajita, Y.Nishio, T.Takahashi, W.Sasaki, H.Kobayashi, A.Kobayashi, R.Kato and Y.Iye: Synth. Metals 41–43 (1991) 2075. CrossrefGoogle Scholar
  • 12 K.Kajita, T.Ojiro, H.Fujii, Y.Nishio, H.Kobayashi, A.Kobayashi and R.Kato:J. Phys. Soc. Jpn. 61 (1993) 23. LinkGoogle Scholar
  • 13 K.Murata, H.Yoshino, H. O.Yadav, Y.Honda and N.Shirakawa:Rev. Sci. Instrum. 68 (1997) 2490 CrossrefGoogle Scholar
  • 14 R. F.Wick:J. Appl. Phys. 25 (1954) 741. CrossrefGoogle Scholar
  • 15 For example, the Hall coefficient strongly depends on the magnetic field. It increases sharply in low fields and then decreases towards high field. This change in the electronic state will be discussed in a forth coming paper. [rf:16] Google Scholar
  • 16 N.Tajima : in preparation. Google Scholar
  • 17 They agree within a factor of 3. The deviation must be due to the uncertainty included in the experiment in §3.2.1. It was made in varying magnetic field. In that condition, the exact value of Hall coefficient is hard to determine especially when it depends strongly on the field strength as is in the present case. Google Scholar